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The lnvcstlgation of stability of the Polseuille flow in a flat cilannel with 
respect to InfInItely s-11 perturbations Is, as Is known, reduced to solving 
the following problem. It Is to determine whether for Equation (0.1) 

(D-a*)acp=iaR{(u-cc) (DS-I$)-u”}~I CD=&, --l<y<i, u=i-yy2 
1 

with boundary conditions 
(r=&=O for y = f 1 (0.2) 

there exists an elgenvalue 
(for any values of posItI\ $rc~i 

I, J?) contained In the upper half-plane 
and R) If such a c = o,+ tc,, 

oi> 0 does exist, then the Polseu:i i f?ow Is unstable. 
This problem has attracted the a. entlon of many Investigators who had 

used analytical and numerical method;, and had arrived at different conclu- 
sions as regards stability (see historical review ln El]. Helsenberg was 
the first to deduce In 1924 [2] the Polseullle flow lnstablllty. His con- 
cluslons were disputed for a lo 

Y 
time, as It seemed aradoxlcalthat vlsco- 

slty phenomena could contribute o instability, and a so because his mathe- lp 
matlcal analysis needed substantiation. 

Proof is given In the following that the direction Indicated by Heisenberg, 
Tollmlen, Lln and Thomas 12 to 53 leads to the correct answer to the stabi- 
lity question. For convenience all references are made to the comprehensive 
review [l] and, therefore, do not indicate the historical sequence of lnves- 
tlgatlons. In Section 1 a rigorous mathematical formulation of this problent 
Is given. Section 2 deals with the analysis of the fundamental system of 
Equations (0.1 . Finally, In Section 3 the characteristic determinant of 
;~z (O.l), 0.2) t Is analysed, and the approximate elgenvalue of o Is 

. 

1. The problbm (0.1),(0.2) is considered, In accordance with [1], In a 

complex y-domain. The position of point I/. has clearly an important bear- 

ing on the analysis. It Is defined as the root of Equation 

U (yc) - c = 0 

It Is the point at which the "degenerate" equation 

(U - c) (I,% .- CL?) c# - U"C$ z 0 

derived from (0.1) for o,!# - m ~SS a singularity. 
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There are two such points for any Q # 1 . The analysis will be made 

with small values of o , so that points y,, and y,, will be close to - 1 

and + 1 , respectively 

J/l, = -((1- ,)I'2 = yc, zJSC = (1 - e)V' = -MC 

(Here and In the following text the root of number0 positive and not tend- 

ing to zero Is understood as the approximation to the mean value). A linear 

substitution of Lhe unknown c In the complex domain 

28 = & (Y--L%) = (I- c)-"'(Y--4 

transforms problem (0.1),(0.2) Into the followlng: 

(Ds-_PP)a(P=ipaIzfl-~z)(Da-_PP)+ i}(p (DC&) (1.1) 

cp=Dcp=O for z = z1, z =z.a=z- z1 (W 

We have to find for Equation (1.1) a point z = I~ at which condition 

(1.2) Is fulfilled; with thle, the complex parameters pa and p2 will be 

expressed by 
p" = u* (1 - c), p' = 2aR (1 - c)2 (1.3) 
z,=zl(C)=L-(l-C)-‘~~=--/ac(l+O(c)) 

2, = 2, (c) = 2 - 21 = 1 + (1 - cp = 2 + ‘/SC (1 + 0 (c)) V.4) 

Such a formulation of the problem has certain methodical advantages over 
the Initial one. Instablllty corresponds to 
As problem (0.1),(0.2) Is an "even" one 

zI In the lower half-plane. 

respect to point 2 - 1 . 
so (1.1),(1.2)18 also even with 

Problem (O.lj,(1.2) Is analyzed by the asymptotic 
method for ainall Q and large & . At the beginning It can be limited to 
the problem of finding small elgenvaluea of o , as evidently such c do 
exist. Stating t,he problem In form (1.1),(1.2) makes the following aaeump- 
tlons possible: because u Is small, the dependence of Ba and pa on o 
Is probably lnelgnlflcant. Therefore, an attempt at finding the first 
approximation can be made thus: substitute 6' and pa for co and cR as 
Independent variables, find points x1 and I~= 2 - a1 at which the eolutlon 
of ~(a; 8, p) together with the first derivative becomes zero, and compute 
o from FOrmUla (1.4) using the derived value of zl. 

These considerations lead to the following. 

1. An anal 
of Equation (1.1 7 

~18 Is made of a certain fundamental system of solutions 
consisting of a pair of nsmooth* solutions which for p- = 

are close to the solution of the degenerate equation, and of a pair of the 
boundary value type solutions. 
x= - tpa 

The dependence of these solutions on @a and 
considered as Independent parameters, Is analysed. 

ficients 0; (1.1) are even, with respect to point z I 1 
Because coef- 

system can be assumed to consist of even and odd functlon6. 
the fundamental 
It appears that 

there exist fismooth" and boundary value type even solutions for which the 
fulfllment of (1.2) at point z1 brings Its fulfllment at point ra . 

2. The characteristic determinant of this pair of functions 

(1.5) 

Is analyzed In the neighborhood of the coordinate system origin z = 0 
(because of the assumed smallness of o ) , 
of Equation Y(r; B, X) - 0 Is derived. 

and the approximate root r,(e,A) 

3. The error of the root determination Is evaluated, or more precisely, 
It Is demonstrated that 

[Iz, (B, A) - Z $6 A) I < IIm z. (B, N I (4.6) 
where Z(@, A) is the exact root of I(#; 6, A) - 0 . 
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Thus, the sign 
imaginary part of 

4. Finally, 

4.1. aa7lor 

of the true root imaginary part coincides with that of the 
the approximate root. 

an analysis Is made of Equation 

2 = Z (S (a, z), h to& z)) 

where the dependence of B and h on z 
from (1.4) for c 

Is obtained substltutlng c(z) 
Proof Is given that the solution of this equation is 

In the same area of the z-plane (I.e. solution for Im z c 0 ). The proof 
of this statement 1s of an elementary topological character. 

Unless otherwise stated, the analysis will be carried out In the domain 
of parameter variation as follows: 

IPI-,~, Ian3 plds (1.7) 

181+0, larg Bibs (1.8) 

IPl-2/s<lzI~~, tagrz-nkI<e (1.9) 

lBi-z< IPi< IBI-" (1.10) 

Here c is a fixed small number (for example, E 5 '/,,n ) * 
The reason for these limitations Is the desire to ensure the appllcablllty 

of asymptotic formulas, while their justification lies in that with the 
stated assum tions It is possible to prove the existence of ~instablllty. 
Limitation8 P l.g)'and (1.10) can be weakened without muoh trouble; moreover, 
this becomes necessary for the analysis of the asymptotic behavior of the 
neutral curve (I.e. the curve in the d-plane in which ul- 0) expressed 
by gsp * const , P's _ const . 

2. Equation (1.1) belongs to the class of equations analyzed by Wason 

C61. In the formulation of Its results, first the fundamental system of 

solutions of the degenerate nonviscous Equation is written 

(2 (1 --.+Z)(L>s - 8") + 1) tp = 0 (2.1) 

which la obtained from (1.1) by a formal transition to Iimlt at p -+ m . 
Squatlon (2.1) is of the Fuchs type (see, for example, c81) having charac- 

teristic values of zero and unity at singular points z = 0 and B - 2 . 
It has, therefore, a fundamental syatem In the neighborhood of d! * 0 , 

consisting of a regular solution at zero 

nwq =z $LWk (2.2) 

k=O 
and a singular solution 

Series (2.2) an@ (2.3) are convergent for 1.21 c 2 . Coefficients u,(e) 

and &(g) are complete functions of sa 

UK(P) = i uklP21, bk @) = jj bklPa’ (2.4) 
I=0 

COeff%ch?ntS akf md bk[ are t0 be found from the recurrent reiatlon- 

ships 
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ak+2, I?% = T 1 1 - -“) &+I, I+? + ( ’ k+l (bk.m - + bw,z+1 ) - (k + I) (k + 2). 
1 - 

(k + 1) (k + 2) (akJ2.h2 + ak+1,1+2)-- k& (dki2,/+2 - uk+l.I+2) (2.6) 

Functions cp,(z, R) and (~~(2, 6) are determined with an approximation of 

the order of the constants. 

In particular, assuming aI,0 = 1, a*,0 = - Vz, b,,, = 0, b,,, = - Vz, 
we obtain 

cpl(%P) =Gf~- 1/22)+~~(1/~2~+...)+..*~+*~(a,z~~+.~.)+ *..I 

~(z,~)=-~+2~+...+~~(~/2z~+.*.)++..++~~(b~2~"+*~.)+... 

This presentation of solutions, usually resorted to in the theory of dif- 

ferential equation analysis, has certain advantages over that of the Helsenr 

berg series, often used in the theory of hydrodynamic stability, from the 

computation and theoretical points of view (cf. [l], Chapter III). Solution 

cpz(z, @) wilf obviously be a multiply-valued function In the neighborhood of 

x=0. In the following it will be necessary to separate the single-valued 

branch In E from the multiply-valued function Ln x . 

For reasons explained below, the following branch will be considered 

lnz=ln/zf+iargz, 1/2n<argz<-3312s 

(i.e. plane t is cut along ray Re t - 0 , Im x > 0). 'In the following 

the analysis will be confined to the cut plane, and Q(X, 8) will be taken 

as the solution relative to In I , as selected above. Wason's conclusions 

[b] with respect to the fundamental system of solutions of Equation (1.1) 

will be formulated as follows. 

Equation (1.1) will be considered In conjunc- 

tlon with Wason's model equation. 

c; 
/’ 

~ 

y(4) + As (z# + &4> = 0 (2.7) 

.L s; .+e 
(Here X is a large parameter IX 1 + = ,, 

. The fundamental system of solutions of Equation 

(2.7) was the subject of a detailed analysis in 

cz" 
C6a]. We shall describe it. Let S* be a circle 

Fig. 1 
in the complex x-plane, defined by 1x1 s a . 
We introduce the following variable 

E = s/s h (- z)*~~ 

and let Ck* be three rays in the x-plane, defined by equations Re{ -0, 
i.e. arg x = “Jskzc - a/3 arg A (k = 1, 2, 3) 

(The diagram relates to the case of arg X = - k). 

We denote by S,* an open sector limited by rays Cf (J # k) . For con- 

venience of analYSlS of the asymptotic behavior of these solutions at X-OX 

we shall consider separately two oases: 
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I. IElXo>% *. l~I<Eo 
i.e. the asymptotic behavior in an arbitrarily fixed g,-neighborhood of 

zero of the F-plane is different from the asymptotic behavior outside that 

neighborhood. In the x-plane this neighborhood contracts fairly rapidly to 

zero for A - m , I.e. this llmltation 1s considerably weaker than, for ex- 

ample, that imposed by the fixed neighborhood configuration in the x-plane. 

It turns out that within 8,* (I.e. in the area &,I h!-‘i~,(x-< a ) there 
exist solittlons with the following asymptotic behavlor: 

(1) PV(x, h) = D" [23ti5""J1(25'~~)] + 0 (a--2) (m=O, 1, 2. 3) 

this asymptotic character is true even within the full circle S* ; 
this Is a smooth regular solution. 

(2) PUk(Z, 3L) = 11" ~z~~~y~~~~~l)(z~'~)~ + 0(~%1-") (m=O, 1, 2, 3) 

this Is a llsmoothW singular solution in the closed sub-area S - S,* 
with singularity at small 1x1 , k = 1, 2, 3 . 

(3) IE4,(X, A) = D” [3/2Q-%y(1 + o(p) (m=O, 1, 2, 3) 

In the closed sub-area S*- Sk*. Here one must assume that within s: 
we have Rec<O. These solutions are of the boundary value type. 

If we now consider a closed sub-sector S* within area S,z- S*-Sa*, we 

find that there exists the following fundamental system of solutions (the 

Independence of solutions Is evident): 

1. U(x, A) - a smooth regular solution 

2. Ua(x, A) - a smooth singular solution 

3. AlfXl k) - a boundary value type solution decreasing from left to 
right (on axis Im x = Of, with a negative exponent 

4. As(rr A) - a boundary value type solution decreasing from right 
to left, with a positive exponent 

A similar situation exists, as proved by Wason, in the case of the general 

equatlon of the form 

$4) +. $j(')yW1 + h2 =&(r)y2-4 = 0 
j=l j=o 

with certain assumptions satisfied by Equation (1.1). More precisely, It is 

necessary to consider circle S 

Izl<Z--6 

and the curvilinear rays C, defined by Equations 

ReE==O (i=1,2, 3) (5 = %A. w W’) 

Rays et originated at point I = 0 , with tangents C,*, define the 

curvilSnear sectors S, which are models of sectors S,* in the representa- 

tion x - *(a) . Then in the model. so** of the closed subsector szb** 

we have a fundamental system of solutions of the form as follows: 
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f) I@ 'plk B, A) = L)" cp, (2, 8) + O(A-q (2.8) 
((~~(3, p) is a regular solution of the degenerate equation (2.1)) 

2) Drncpz(G P, A)= D"cp,(z, P)$ Rm(z, h) (2.9) 

R,, = 0 (k2r2), RI = 0 (WC”), R2 = 0 (z-l), R3’= 0 (r2), R,,,=O(I-a) 

(cpa(t, @) ls(fi&!ar solution of*%he degenerate equatlotl (2.1)) 
5 so, where 1s aflxednumber) (2.10) 

(He<<0 for z>O; m=O, 1, 2, 3) 

(2.11) 

(wltrh exponent k(r) dlmlnlshlngn~~ ;gl;; 
P 
t, a smooth fbCtfOn which does 

4) (2.12) 

(with exponent ~(8) increasing to the right, a smooth function which does 
not vanish) 

B'unctlon e(r) can be presented in the explicit fomn 

0 

+ da-' r/z (I- l/22)) 

with a natural selection of brancnes. It will be seen from this formula, 

OF directly from the integral, that the sewnt of the real axls - eLz% 2-b 

ln the r-plane becomes a certain sector - e's% L a of the Fe81 axis in 

the x-plane, and ln particular that axis Imr - 0 , her20 Is entirely 

contained ln sector .S, (as It Is not intersected by any of the C,, and 

because for small IsI we have C, -C,*) . This proves the validity of the 

derived formulas ln the neighborhood of point z = I . 

We note once again the fundaBlenta1 features of the separated fundruentsl 
system of solutions. It contains two osmooth" functions ~(r' 6, X) and 
(~*(a; 0, A) which are approximate solutions of the degenerate %onvlscousa 
equation (2.1). However, 
only ln srea S*E, ; 

~a(z; g, A) may be considered aL a smooth function 
the two boundary value type solutions e snd CPI , 

r ughly spesklng;represent ln S* the exponential functions wlth exponent 
$6; . One of these functions decreases from the left end %nwards of ,Pe; 
and+*8 second from the right end. 'l&us, if point tx at which we wish to" 
establish boundary condltlons cp(z ) -D (I~) - 0 lies wlthln S*E,' and 
because point 8 = 1 , as stated a&e, t also ln the spaoeS*; 
expect to find conditions which for slspler problems are called"r&~ 
degeneration" [lo]. This asaumptlon proves to be‘correct. 

Even soIutlons . Having proved the existence of tuollne- 

arly independent even solutlons with respect to point I - 1 , one smooth, 
the other of the boundary value type, It is possible to reduce the rsnk of 
the ctiafacterlstlc determinant from four to two. This siqllflea the expo- 
sition without affecting the prlnelple. 

For the POrmulatlon of the even solution of the boundary value problem 
it will be necessary to consider the CaUChy problem for (1.1) with initial 
data at point z = 1. 
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Y-)(1; p, k)=R(m)(l; p, X) tm=o, 2) Y(‘) (1; p, h) = 0 (l=l, 3) 

Function Y(r; 8, A) Is defined by Formula 

Y (2; b,X) = [C,lcp, (1; B, k)cpl(? B,V + &I% (1; BY v 'pz (z; 89 v + 

+ Ill ‘ps (2; h 1) + ki2 (1; IA VI 'Pa (z; t% A) (2.13) 

Cj = const, [a] EE U (1 + 0 (h-l)) 

For small z solution Y(r; 8, A) to ether with Its derivatives has the 
same asymptotic character as (P~(I; @, k f , but Is an even function with 
respect to B = 1 . 

Of course, It la not possible to derive a smoth even solution by solving 
directly Cauchy’s problem at point B - 0 , 
er will “grow” 

as Inevitably the boundary lay- 
at the right- and left-hand side boundaries. There exists, 

however, an even boundary value function Y(r; B, A) which can be subtracted 
with suitable coefficients, leaving a smooth function. With this In mind, 
we shall solve Cauchy’s problem for Initial conditions as follows: 

@l(m) (1; a h) = @@) (2, B) (rn=O, 2); uP(I; p, A)=0 (i=l. 3) 

where 0(z, B) Is the even solution of the “nonviscous” equation [ 61 expressed 
by 

@ (z, B) = ‘p1 (z, B) + kcpz (z, B) (2 14) 

(coefficients k - k(e) will be derived below), then 

@lk B. A) = Ulcp, (z; B, A) + IklqJz (G BY A) + 
+ 0 (A-‘1% u; B,Q 94 (z; p, A) + 0 (h-4)(pp (1; B, 11% k B7 1,) 

The lgst term of el(#; 8, A) contains factor ~~(1; @, A) which Is expo- 
nentially large. It Is ln fact the parasitically rown boundary value layer. 
It will disappear, however, If we subtract from @I f r; p, A) the even boundary 
value. solution (2.13) after having It multiplied by the coefficient 
0 (1L-3cp4 (i; B, A.)’ for ‘ps (2; B, 11) we obtain the sought smooth even solutlon 

a (z; B, A) = IRIS, k B, h) + ~kh tz; B, h) + 0 m(~~ (1; h m, b; fh A) (2.15 ) 

Coefficients of cpl and ga become terms of the order of O(Xm4) . 

Before proceeding further It Is necessary to analyse the root of equation 

close to the coordinate origin 

(2.16) 

The dependence of the boundary value solution y(r; 8, A) on 6 Will 

not matter; In this case It will be sufficient to consider the asymptotic 

term which does not contain 6 (as was done before). The dependence of 

function O(r; 8, A) on B Is, on the other hand, very considerable. 

We shall consider the even solutions of the nonviscous and of the dege- 
nerate charaaterlstlc equations. Coefficient k(g) of the even solutlon 
0(x, e) of Equation (2.1) In Formula (2.14) can be presented In the form of 
a -serlks 

k (8) = f kjp 
j&l 

(k (RI= - t; I:; i; ) 
Formulas for coefficient k, are obtained from the basic equation of (2.14) 

(the numerator and denominator are power series with respect to 6”). These 
coefficients may also be found In the form of definite repetitive Integrals 
of known functions, in particular 

dz<O 

For our purposes It will be sufficient to know that 
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As the dependence of terms @(a; 8, X) and @'(a; 8, X) on X in Equa- 
tion (2.16) is weak and Y'(z; 8, X) 1s fXI-times greater than Y(r; 8, X), 
It will be natural to take as the first approximation of I the root of 
Equation @(a; P k) - 0 I.e. to equate to zero coefficient of the large 
term Y/(x; 8, Xl (of the?order of A ) 
ence of @(a; 8, X) on k , 

In view of the shown weak depend- 
It would again be natural to expect that the 

principal asymptotic term of this root will coincide with the principal 
asymptotic term of the root of the simpler equation Q(E, $) = 0 of the 
nonviscous characteristic equation. 

For small z and P the following eqU&lity is true 

tR (2, p) = 2 + 0 (9) + 0 (p22) - klpa + 0 (p2z In 2) = z - klP” + 0 (2) + 0 @“I 
From this we obtain 

2 = /&pa+ 0(/32) (2.18) 

It will be shown in the following that the first term of (2.18) is in 

fact the principal asymptotic term of the root of Equation (2.16). The 

possibility of Its derivation from the solution of the nonviscous problem 

had evidently not been realized earlier (cl], Chapter III). 

3. Purther analysis will be carried out 8S follows. The principal asymp- 

totic terms of function I(r; g, A) are written down for large A , and small 

,9 and I . These terms 8re denoted by fl(r; 6, A) , and the approximate 

solution s - s,(g, X) of EqU8tion f!(a; p, A) = 0 Is found. Next, we 

evaluate the difference IZ(fl, A) -x0(@, A)1 between solution Z(g, A) or 

Equ8tlOn (2.16) and bo(g, 1) . This difference la found to be smaller than 

the imaginary part of a,(B, X) which means that Zfg, X) is in the s8me 

half-plane as a*(@, X) . Finally we mske the following substitution: 

h = (2iuR (1 - +a, p = aa (1 - c) 
c = c (2) = 1 - (1- 2)-s = (- 22 + za) (l-Z)+ 

and consider Equation 

It is shown that for large aR and small a a this equation has its solu- 

tion a(@, A) close to solution z(p = a, h = @iaR)"), and in any C&Se Is 

in the same plane. Completion of this exercise provides the complete solu- 

tion of the Polseullle flow stability problem. 

!&he even solutions (2.13) and (2.15), expressed in terms of the %ORVlB- 

cous" solutions cpl(a; 8) and Q,(s; P) , and of the boundary value equation 

(P3(2; 0, X) decreasing from left to right, have the form 

a'"' (2; S, A) = (plcm) (2, P)+ k(B)(pz(m) (2, P)+ 0(~21?,) = 

= GP’ (2, p) + 0 (p&J (m=O, 1. 2, 3) (3.1) 
\y'"' (2, p, ?L) = fqp (2; p, h) +o(h-') (P is 8rbitrary) 

(these estimates are made on the assumption that go [Al'*/8 < IzI< 2 - 6 
0 < 6 < 2, &a > 0 are fixed). After substitution into (2.16), we have 
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@h B-t o(~-2)+o(PRo) (ps(z; p, h)$ O(h_*) 

Q)‘P* P)+o(~-*)+O(~*Rl) qb,(z; p, h)+O(a-P) = 

o 
(3.2) 

As an aPProxlmatlon of Equation (3.2) we can take Equation 

P-3) 
For the determination of the approximate root of this equation it will be 

sufficient (as will be shown later) to use approximations as follows: 

@ tz* P) z z _ QZ cps(z; P. h) 
@,(z, PI 3 (p<(z; p, a) = 

_ p-l (- q-“l. ( ~2+i~1 
;! (3.4) 

On comparing the two formulas of (3.4), and considering (assuming) that 

arg pz< arg z. (this assumption Is based on formulas expressing c in 

terms of I , and Ba In terms of c(x)', we assume (3.5) 

Re z. = Re (kllj2), In1 20 = - 

This defines a certain approximate root of Equation (2.16). 

The error made in the determination of this root may be estimated In 
several ways. In order to avoid any arguments about the analytic nature of 
our equations (Incidentally, not very complicated), we shall use heYe_Newton's 
method In the form given to It by Kantorovkh C83 In preference to the often 
used Runge theorem. 

This method, In its application to the solution of equation f(a) = 0 , 
can be stated as follows: let x0 be the approximate root of Equation 

f Go) 
f(z)=O, - I i f’(zo) d q* I I f” (z) 

maxz jr (zo) < K 

with h = 51 FL"d K - 0 with respect to a certain parameter. Then the true 
root will be within the circle It - x,1 5 51 (condition that K - 0 Is not 
essential, It Is used here to simplify the theorem formulation). AS Only 
the sign of the imaginary part Im x(e, L) is Important, It will be gufflcl- 
ent to prove that 

7j = 0 (Im ze) = 0 (p-'p-') 

Recalling that (In accordance with (1.5)) 

f (z; fI,h) = (P (z; Ix X) Y' (z; B, 31) - @' (z; B, V y (z; BY k) 

and using estimates (2.8) to (2.12) and (2.17), we easily obtain 

f ("0; B, N = 'ps (20; B, A) 0 W') 0 (BP)J' (z; B* A) = (P3 (z,; B, A) 0 (BP) 
f" (z; B, A) = 93 (zo; B, h) 0 (B"P2) 

Hence, 

I<, --= 0 (B”‘) 0 (BP) -+ 0, q = 0 (p-y = 0 (p’‘p-1) for p =_o (p-l’@-q 

This proves t%at Equation (2.16) has a root x - Z(B, 1) contained in 
circle 

I zo (B, 1) - i I dq = 0 (p-‘B-‘) (3.6) 

with the negative Imaginary part of parameter 

Im z (fi, h) = - l/Z I/', (- kl)'/pRc p-lb-1 (1 + 0 (p-l/3-') 



However, It is the root r&s", aR) of the following equation that has to 
be found 

Proof of the existence of this root is obtained by applying the principle 
of the stationary point to the representation of circle 
by means of the 'Z-function. 

1 z,,-- zl <CI#WP-~J 
By virtue of Formulas (3.5) and (3.h this 

circle penetratea Inside the circle of radius 1 Z- zol== ~(p-~fl-~).’ 

Notes 1, It ie easily seen that a more extensive application of 
results of Mason's work would make it posafble to derive the asymptotic 
character of the neutral curve branches in the 0, R-plane . Specifically, 
this curve has two branches defined by Equations j? 45 a-' and J) * a-". 
This result Cl] can be proved as strictly, as the finding of pofnts inside 
a curve. 

2. The method applied here may also be used for the derivation of eigen- 
values c = @(a, Rf ) 
Lin method cl]. 

and In this sense it is simpler than the Heisenberg- 

3. The problem of boundary layer stability on a flat plate, and other 
Problems concerning plane-parallel flow stability losses, may be anafized 
by this method. 

The author wishes ta thank A.N. Kolmogorov for drawing his attention to 

this problem, and for the interest, shown and partlolpation in this work. 
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